我们给出一般参数下曲线的曲率、挠率与Frenet 标架的计算公式。有时候弧长参数不是很容易取得,这时候就可以直接利用一般参数来求曲率、挠率与Frenet 标架。
笔记下载:一般参数下曲率与挠率的公式 curvature and torsion for general parametrization
1,单位切向量:我们之前有结论,在一般参数下,曲线 \(\vec{r}=\vec{r}(t)\) 的单位切向量为\[\vec{T}=\frac{\vec{r}'(t)}{|\vec{r}'(t)|}\]
在弧长参数下,\[\vec{T}=\frac{d\vec{r}}{ds}=\dot{\vec{r}}(s)\]
结合上面两个式子,我们有
\[\vec{r}'(t)=|\vec{r}'(t)| \vec{T}=\vec{T}\frac{ds}{dt}\]
两边关于 \(t\) 求导,
\begin{align*}\vec{r}^{\prime\prime}(t)&=\frac{d}{dt}\left(|\vec{r}'(t)| \vec{T}\right)=\left(\frac{d}{dt}|\vec{r}'(t)| \right)\vec{T}+|\vec{r}'(t)| \frac{d\vec{T}}{dt}\\ &=\left(\frac{d}{dt}|\vec{r}'(t)| \right)\vec{T}+|\vec{r}'(t)| \frac{d\vec{T}}{ds}\cdot\frac{ds}{dt}\\ &=\left(\frac{d}{dt}|\vec{r}'(t)| \right)\vec{T}+|\vec{r}'(t)|^2 \frac{d\vec{T}}{ds}\\ &=\left(\frac{d}{dt}|\vec{r}'(t)| \right)\vec{T}+|\vec{r}'(t)|^2k(s)\vec{N}\end{align*}
最后一式我们应用了 Frenet 公式 \(\frac{d\vec{T}}{ds}=k(s)\vec{N}\)。我们把它与 \(\vec{r}'(t)\) 做向量积,得到
\begin{align*}\vec{r}'(t)\times\vec{r}^{\prime\prime}(t)&=|\vec{r}'(t)| \vec{T}\times\left(\left(\frac{d}{dt}|\vec{r}'(t)| \right)\vec{T}+|\vec{r}'(t)|^2k(s)\vec{N}\right)\\ &=k(s)|\vec{r}'(t)| ^3\vec{T}\times\vec{N}=k(s)|\vec{r}'(t)| ^3\vec{B}\end{align*}
最后一式我们应用了等式 \(\vec{T}\times\vec{N}=\vec{B}\)。所以我们就得到了副法向量的公式
2,副法向量的公式:
\[\vec{B}=\frac{\vec{r}'(t)\times\vec{r}^{\prime\prime}(t)}{k(s)|\vec{r}'(t)|^3}\]
3,曲率的公式:将上面副法向量取模(长度),因为副法向量是单位向量,所以
\[1=|\vec{B}|=\frac{|\vec{r}'(t)\times\vec{r}^{\prime\prime}(t)|}{k(s)|\vec{r}'(t)|^3}\]
从而得到曲率的公式
\[k(s)=\frac{|\vec{r}'(t)\times\vec{r}^{\prime\prime}(t)|}{|\vec{r}'(t)|^3}\]
4,单位法向量:由右手系关系,我们得到
\[\vec{N}=\vec{B}\times \vec{T}\]
5,挠率的公式:由之前的推导,
\[\vec{r}^{\prime\prime}(t)=\left(\frac{d}{dt}|\vec{r}'(t)| \right)\vec{T}+|\vec{r}'(t)|^2k(s)\vec{N}\]
两边关于 \(t\) 求导,考虑到第一项的导数只有 \(\vec{T},\vec{N}\)方向的分量(我们不考虑它的具体表达式),而 \[\frac{d\vec{N}}{dt}=\frac{d\vec{N}}{ds}\cdot\frac{ds}{dt}=|\vec{r}'(t)|(-k(s)\vec{T}+\tau(s)\vec{B})\] 我们可以得到
\[\vec{r}^{\prime\prime\prime}(t)=\lambda(t)\vec{T}+\mu(t)\vec{N}+k(s)\tau(s)|\vec{r}'(t)|^3\vec{B}\]
这里 \(\lambda(t),\mu(t)\) 是 \(\vec{T},\vec{N}\) 的系数,我们不关心它们。现在做混合积
\[\vec{r}^{\prime\prime\prime}(t)\cdot\left(\vec{r}'(t)\times\vec{r}^{\prime\prime}(t)\right)=k^2(s)\tau(s)|\vec{r}'(t)|^6\]
所以挠率的公式为
\[\tau(s)=\frac{\vec{r}^{\prime\prime\prime}(t)\cdot\left(\vec{r}'(t)\times\vec{r}^{\prime\prime}(t)\right)}{k^2(s)|\vec{r}'(t)|^6}\]
6,公式总结:
\[\vec{T}=\frac{\vec{r}'(t)}{|\vec{r}'(t)|},\quad \vec{B}=\frac{\vec{r}'(t)\times\vec{r}^{\prime\prime}(t)}{k(t)|\vec{r}'(t)|^3},\quad \vec{N}=\vec{B}\times \vec{T}\]
\[k(t)=\frac{|\vec{r}'(t)\times\vec{r}^{\prime\prime}(t)|}{|\vec{r}'(t)|^3},\quad \tau(t)=\frac{\vec{r}^{\prime\prime\prime}(t)\cdot\left(\vec{r}'(t)\times\vec{r}^{\prime\prime}(t)\right)}{k^2(s)|\vec{r}'(t)|^6}\]
我们来看一个例子。
例:设曲线的方程为
\[\vec{r}(t)=(t+\cos t t,t-\cos t,\sqrt2\sin t)\]
求曲线的单位切向量,单位法向量,副法向量,曲率和挠率。
解:我们先求各阶导数,
\[\vec{r}'(t)=(1-\sin t, 1+\sin t,\sqrt{2}\cos t)\]
\[\vec{r}^{\prime\prime}(t)=(-\cos t, \cos t,-\sqrt{2}\sin t)\]
\[[\vec{r}^{\prime\prime\prime}(t)=(\sin t,-\sin t,-\sqrt2\cos t)\]
\[|\vec{r}'(t)|=\sqrt{(1-\sin t)^2+(1+\sin t)^2+2\cos^2t}=2\]
先求出单位切向量,
\[\vec{T}=\frac{\vec{r}'(t)}{|\vec{r}'(t)|}=\frac{1}{2}(1-\sin t, 1+\sin t,\sqrt{2}\cos t)\]
求向量积
\begin{align*}\vec{r}'(t)\times\vec{r}^{\prime\prime}(t)&=\begin{vmatrix}\vec{i}&\vec{j}&\vec{k}\\ 1-\sin t& 1+\sin t&\sqrt{2}\cos t\\ \sin t&-\sin t&-\sqrt2\cos t\end{vmatrix}\\ &=-\sqrt{2}(1+\sin t)\vec{i}-\sqrt{2}(1-\sin t)\vec{j}+2\cos t\vec{k}\end{align*}
它的长度
\[|\vec{r}'(t)\times\vec{r}^{\prime\prime}(t)|=\sqrt{2(1+\sin t)^2+2(1-\sin t)^2+4\cos^2t}=2\sqrt{2}\]
现在可以求出曲率
\[k(t)=\frac{|\vec{r}'(t)\times\vec{r}^{\prime\prime}(t)|}{|\vec{r}'(t)|^3}=\frac{2\sqrt{2}}{2^3}=\frac{1}{2\sqrt{2}}\]
副法向量
\begin{align*}\vec{B}&=\frac{\vec{r}'(t)\times\vec{r}^{\prime\prime}(t)}{k(t)|\vec{r}'(t)|^3}\\ &=\frac{2\sqrt{2}}{8}(-\sqrt{2}(1+\sin t),-\sqrt{2}(1-\sin t),2\cos t)\\ &=\left(-\frac{1}{2}(1+\sin t),-\frac{1}{2}(1-\sin t),\frac{1}{\sqrt2}\cos t\right)\end{align*}
单位法向量
\begin{align*}\vec{N}&=\vec{B}\times \vec{T}\\ &=\begin{pmatrix}\vec{i}&\vec{j}&\vec{k}\\ -\frac{1}{2}(1+\sin t)&-\frac{1}{2}(1-\sin t)&\frac{1}{\sqrt2}\cos t\\ \frac{1}{2}(1-\sin t)& \frac{1}{2}(1+\sin t)&\frac{1}{\sqrt{2}}\cos t)\end{pmatrix}\\ &=\left(-\frac{1}{\sqrt{2}}\cos t\right)\vec{i}+\left(-\frac{1}{\sqrt{2}}\cos t\right)\vec{j}+\sin t\vec{k}\\ &=\left(-\frac{1}{\sqrt{2}}\cos t,-\frac{1}{\sqrt{2}}\cos t,\sin t\right)\end{align*}
最后求出挠率
\[\tau(t)=\frac{\vec{r}^{\prime\prime\prime}(t)\cdot\left(\vec{r}'(t)\times\vec{r}^{\prime\prime}(t)\right)}{k^2(s)|\vec{r}'(t)|^6}=\frac{-2\sqrt{2}\cdot 8}{2^6}=-\frac{1}{2\sqrt2}\]